一號站代理官網_高中數學答題技巧與規律
對於學生來說,高中數學的重要性不言而喻,做題時,有一些“條件反射”我們應該記住。下面是小編整理的高中數學答題技巧與規律,希望對大家有所幫助。
高中數學答題技巧與規律:
規律1
函數或方程或不等式的題目,先直接思考後建立三者的聯繫。首先考慮定義域,其次使用“三合一定理”。
規律2
如果在方程或是不等式中出現超越式,優先選擇數形結合的思想方法。
規律3
面對含有參數的初等函數來說,在研究的時候應該抓住參數沒有影響到的不變的性質。如所過的定點,二次函數的對稱軸或是……
規律4
選擇與填空中出現不等式的題目,優選特殊值法。
規律5
求參數的取值範圍,應該建立關於參數的等式或是不等式,用函數的定義域或是值域或是解不等式完成,在對式子變形的過程中,優先選擇分離參數的方法。
規律6
恆成立問題或是它的反面,可以轉化為最值問題,注意二次函數的應用,靈活使用閉區間上的最值,分類討論的思想,分類討論應該不重複不遺漏。
規律7
圓錐曲線的題目優先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點有關,選擇設而不求點差法,與弦的中點無關,選擇韋達定理公式法;使用韋達定理必須先考慮是否為二次及根的判別式。
規律8
立體幾何第一問如果是為建系服務的,一定用傳統做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握 它們之間的三角函數值的轉化;錐體體積的計算注意係數1/3,而三角形面積的計算注意係數1/2;與球有關的題目也不得不防,注意連接“心心距”創造直角 三角形解題。
規律9
導數的題目常規的一般不難,但要注意解題的層次與步驟,如果要用構造函數證明不等式,可從已知或是前問中找到突破口,必要時應該放棄;重視幾何意義的應用,注意點是否在曲線上。
規律10
導數的題目常規的一般不難,但要注意解題的層次與步驟,如果要用構造函數證明不等式,可從已知或是前問中找到突破口,必要時應該放棄;重視幾何意義的應用,注意點是否在曲線上。
規律11
注意概率分佈中的二項分佈,二項式定理中的通項公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點能否取到需單獨驗證,用點斜式或斜截式方程的時候考慮斜率是否存在等。
規律12
絕對值問題優先選擇去絕對值,去絕對值優先選擇使用定義。
規律13
與平移有關的,注意口訣“左加右減,上加下減”只用於函數,沿向量平移一定要使用平移公式完成。
規律14
關於中心對稱問題,只需使用中點坐標公式就可以,關於軸對稱問題,注意兩個等式的運用:一是垂直,一是中點在對稱軸上。